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Foreword to 
 

Professional Team Demonstration Uncertainty/Sensitivity Analysis 
 
 
  
In general terms, the demonstration study of Sensitivity and Uncertainty Analysis concerns producing INPUT for 
computer models and then analyzing the corresponding OUTPUT to determine the extent of influence the input 
variables have on the magnitude and uncertainty of the output responses.  The Demonstration Analysis has the 
following specific objectives: 
 

1. Provide an explicit example of the use of state of the art statistical methods for performing sensitivity 
and uncertainty analysis in a context of direct interest to the Commission. 

 
2. Illustrate the implementation of Latin hypercube sampling for adaptation by the modelers to their 

proprietary, operational models. 
 
3. Provide the rationale for Form E to be added to Module 3 that will complement the existing Form B 

regarding wind speeds.   
 

The techniques described in the Demonstration Analysis apply to any computer model so the focus is on the 
sampling method used to determine the INPUT and the analysis techniques used to determine the impacts on the 
OUTPUT.  The computer model gives a framework for illustration but is not of interest in itself and hence, should 
not be the centerpiece of discussion.  For example the Rankine-vortex wind field, linear decay and cubic damage 
relationships are surrogates or place-holders for actual operational modules that the Professional Team is 
precluded from using in a public domain.  Each of these surrogates could be replaced by a realistic module without 
change to the manner in which the input is generated or the manner in which the input-output relationships are 
assessed.  Of course, replacing one or more model surrogates would change the specific numerical values 
generated but here again, it is the output graphical and numerical products that are of interest.   The sensitivity and 
uncertainty analysis methodology demonstrated in the report provide a sound approach to assessing computer 
models.  
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Introduction. During its June 5-6 2001 meeting in Ft. Lauderdale, the Professional Team developed sample 
meteorology characteristics to serve as the basis for a demonstration uncertainty and sensitivity analysis (UA/SA).  
The Professional Team felt that a demonstration could serve as a template to guide modelers in complying with the 
Commission’s Year 2000 Standards 5.6.3 and 5.6.4.  Details of the proposed analysis were presented to the 
Commission at its July 30, 2001 meeting and approval was received for a developing a demonstration analysis.  
The working definitions of sensitivity and uncertainty analysis used in the document are as follows. 
 

Sensitivity analysis: Determination of the change in response of a model to 
changes in model inputs and specifications 

Uncertainty analysis: Determination of the variation or imprecision in model output 
resulting from the collective variation in the model inputs 

 
The completed demonstration results appear in this report and a summary will be presented to the Commission at 
their scheduled September 18-19, 2001 meeting.  Following the presentation of the results, it is anticipated that the 
Commission, with advisement by the Professional Team, can determine sample input characteristics that modelers 
would utilize as part of the application process. 
 
Specifically, the Professional Team would develop files containing sample input characteristics approved by the 
Commission.  These files would be given to the modelers, who would run them and provide corresponding output 
files with their submissions in the same sense as is currently being done for Form B.  The Professional Team could 
then use these input-output files to perform its own sensitivity and uncertainty analyses prior to onsite audits.  
Finally, with each modeler using the same input, the output files could be useful in making model-to-model 
comparisons if so desired by the Commission.   
 
Figure 1 shows a schematic representation of the demonstration input-output process.  A sample of size n=100 is 
selected for each of four input characteristics.  This sample is used as input to the wind speed computer model, 
which is the Rankine-vortex model in this demonstration analysis.  Wind velocity is computed hourly for 12 hours for 
each of the 100 sets of four input characteristics.  The calculated wind speeds are used as input to surrogate 
damage function model and the damage is converted to loss cost.  The goal of the sensitivity analysis is to 
determine which of the input X’s influence wind velocity at time t and max lost cost.  The goal of the uncertainty 
analysis is to determine which of the input X’s contribute to the uncertainty in the wind velocity at time t and max 
lost cost.   
 

 
Figure 1. Schematic Representation of the Input-Output Process for the UA/SA Process 
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The remaining sections of this report will: 
 

• Define the tracking and exposure grid used in the demonstration UA/SA  
• Define sample input characteristics and probability distributions used to characterize their uncertainties 
• Assess the plausible correlations among input probability distributions 
• Present the Rankine-vortex function that was used to calculate wind velocities through the grid and 

summarize the calculated wind velocities 
• Define standardized regression coefficients (SRC) and partial correlation coefficients (PCC) that are used 

in the demonstration analysis as measures of relative influence of the sample input characteristics 
• Illustrate the calculation and interpretation of SRCs and PCCs with an example 
• Display sensitivity measures versus time 
• Present the details of a simplified loss cost function used to convert wind velocities in the analysis to loss 

cost 
• Illustrate sensitivity analysis applied to loss costs 
• Define uncertainty importance (UI) as a measure of the relative contribution to the uncertainty in the sample 

input characteristics 
• Illustrate the calculation and interpretation of UIs with an example 
• Illustrate uncertainty analysis applied to loss cost 
• Summarize the results of the demonstration UA/SA and their implication on the Commission standards and 

modules 
 
Objective of the Demonstration Analysis.  It must be emphasized that the results presented in this report are 
intended to demonstrate the application of statistical sampling methods in the areas of meteorology and loss cost 
estimation.  The concrete example utilized in this demonstration should greatly facilitate the implementation of Latin 
Hypercube Sampling methods.  The “black-box” demonstration model is utilized to illustrate setting up the input 
variables (determining which computer runs are to be made) and to illustrate the graphical and numerical summary 
products possible for assessing the input-output variable relationships (both sensitivity and uncertainty).  The black-
box used here is by no means a black-box, but a simple Rankine-vortex windfield with linear decay, a cubic 
damage function, and a simple 1% deductible with 50% damage equating to 100% insured loss.  Aspects of this 
simple model do not compete with sophisticated modules in commercial modules.  However, the process of 
performing the sensitivity and uncertainty analysis carries over to the proprietary models.  Of particular concern 
could be the cubic damage function, which has zero damage at 50mph, complete damage at 140mph and a cubic 
function in between (Equation 12).  This damage function is provided to move the UA/SA from wind speeds to loss 
costs.  The intent is not to focus on the damage or insurance “module” per se, but rather to consider the 
demonstration study as it relates to general sensitivity and uncertainty analyses.  
 
Tracking Grid. The demonstration analysis included results for Category 1 and Category 5 hurricanes using the 
Rankine-vortex function (details presented later) to make wind velocity determinations.  These determinations were 
made at each vertex in a 5 × 13 grid (65 vertices) that follows the path of the hurricane along an area 20mi wide 
and 180mi long.  This grid is illustrated in Figure 2. 
 
Hurricane tracking started at (0, 0) in the grid in Figure 2.  These coordinates are located directly offshore 15 miles 
east of Miami.  Miami has coordinates (15, 0).  At time t = 0hr, the eye of the hurricane has coordinates (0, 0) with a 
westerly heading.   Wind field speed calculations were made hourly for 12hr at each vertex in the grid.   
 
The Professional Team selected sample meteorology characteristics to be used, their ranges, and distributions.  
Those characteristics are now described.  
 
Input Sample Characteristics. The Professional Team selected central pressure (CP), radius of maximum winds 
(Rmax), forward speed (VT), and far field pressure (FFP) as input characteristics of interest as illustrated in the first 
box of Figure 1.  Each of these characteristics (parameters) has an associated degree of uncertainty for a specific 
storm.  Table 1 summarizes the ranges of uncertainty ascribed to the sample meteorology input characteristics by 
the Professional Team for each hurricane category. 
 
Since forward speed varies from 10 to 20 mph during the 12hr period for both Category 1 and Category 5, the eye 
of the storm will move from (0, 0) to (120, 0) with VT = 10 mph and from (0, 0) to (240, 0) with VT = 20 mph.  The 
mean forward speed (15mph) moves the eye from (0, 0) to (180, 0). 
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Figure 2.  Tracking Grid Along (X,0) for Calculating Hourly Wind Velocities 
 
 

Table 1. Ranges of Uncertainty for Meteorology Input Sample 
           Characteristics Used in the Demonstration UA/SA 

 
 Category 1 Category 5 
Central pressure 980mB ≤ CP ≤ 990mB 900mB ≤ CP ≤ 920mB 
Radius of max wind 12mi ≤ Rmax ≤ 21mi 6mi ≤ Rmax ≤ 12mi 
Forward speed 10mph ≤ VT ≤ 20mph 10mph ≤ VT ≤ 20mph 
Far field pressure 1010mB ≤ FFP ≤ 1016mB 1010mB ≤ FFP ≤ 1016mB 

 
 
The uncertainties in the sample input characteristics in Table 1 were characterized with triangular probability 
distributions.  The parameters of these distributions are given in Table 2.  The means and standard deviations in 
Table 2 are determined by Equations 1 and 2. 
 

3
cba

Mean
++++

==                                                                    (1) 

 

18
)()()( acccbbbaa

DevSt
−−++−−++−−

==                                                   (2) 

 
 

Table 2. Parameters of Triangular Distributions Used to Characterize the Uncertainty in 
the Input Sample Characteristics in Table 1 

 
 Category 1 Category 5 
 Parameters Mean St Dev  Parameters Mean St Dev 

CP 
a=980 
b=985 
c=990 

985 2.04  
a=900 
b=910 
c=920 

910 4.08 

Rmax 
a=12 
b=15 
c=21 

16 1.87  
a=6 
b=8 
c=12 

8.67 1.25 

VT 
a=10 
b=15 
c=20 

15 2.04  
a=10 
b=15 
c=20 

15 2.04 

FFP 
a=1010 
b=1013 
c=1016 

1013 1.22  
a=1010 
b=1013 
c=1016 

1013 1.22 
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Simple Correlation. The Professional Team discussed the possibility of CP and Rmax having some degree of 
correlation or linear relationship, particularly for a Category 5 hurricane.  A commonly used measure of the degree 
of linear relationship between two variables is the simple correlation coefficient, which varies between -1 and +1 
with a negative correlation indicative of one variable increasing while the other is decreasing.  On the other hand, a 
positive correlation indicates that the two variables jointly increase or decrease.  Equation 3 gives the formula for 
computing the simple correlation coefficient for bivariate variables X and Y based on a random sample of size n. 
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As a result of the Professional Team’s discussion, the sample correlation between CP and Rmax was set at 0.50 
for a Category 5 and as 0.25 for a Category 1.  All other pairs of input parameters were uncorrelated.  A Latin 
hypercube sample (LHS) (see Iman 1999 summary article in Appendix A for details) of size n=100 was generated 
using the sample characteristics given in Table 2.  The target correlations between CP and Rmax were 0.25 for a 
Category 1 and 0.50 for a Category 5 (Iman and Conover, 1982 and Iman and Davenport, 1982).  The target 
correlation was 0.00 for all other pairs of input parameters. 
 
The actual pairwise correlations for the LHS based on Equation 3 are given in Table 3.  Note that the sample 
correlations for CP and Rmax are 0.25 for Category 1 and 0.49 for Category 5, which are very close to their target 
values.  Note that the other (off-diagonal) pairwise correlations are all close to their desired value, 0.00.  
 

Table 3. Simple Correlations for Category 5 Sample Values 
 

 Category 1   Category 5 
CP 1.000 0.250 0.006 -0.007  CP  1.000 0.490  0.005 -0.012 
Rmax 0.250 1.000 -0.013 0.025  Rmax  0.490 1.000 -0.012 -0.009 
VT 0.006 -0.013 1.000 0.007  VT  0.005 -0.012 1.000  0.006 
FFP -0.007 0.025 0.007 1.000  FFP -0.012 -0.009  0.006 1.000 
 CP Rmax VT FFP   CP Rmax VT FFP 

 
 
Figures 3 and 4 show scatterplots of the sampled values of CP and Rmax for Category 1 and 5, respectively.  Note 
that these graphs show a slight tendency for CP and Rmax to increase together, more so in Figure 4 than in Figure 
3.  That is, there is slight linear relationship indicated between these two sample characteristics, as expected from 
their prescribed correlation. 
 
Rankine Vortex Function. The wind velocity was calculated hourly at each vertex in the 5 × 13 grid shown in 
Figure 1 for each of the n=100 LHS values.  These calculations were based on the Rankine-vortex function 
(Holliday 1969) which uses the values of CP, Rmax, VT, and FFP in the LHS.  The calculation of the wind velocity 
(VTotal) at an arbitrary point (x, y) in the storm-centered coordinate system is now explained.   
 
For a Rankine vortex, the tangential wind velocity function (see Figure 5) is 
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where 

TVCPFFPV −−= 15114 .*max                                                                      (5) 
 
The rankine vortex wind model (See Figure 6) is a combination of a linear increase in wind as a function of the 
radius in the inner core (often termed solid-body rotation) and a hyperbolic decrease in wind speed beyond the  
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Figure 3. A Scatterplot of Rmax versus Central Pressure with a Correlation of 0.25 
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Figure 4. A Scatterplot of Rmax versus Central Pressure with a Correlation of 0.5 
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Figure 5. Tangential Wind Velocity Vector 
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Figure 6. Rankine Vortex Function 

 
 
radius of maximum winds (the classical Rankine vortex). In ideal cases (inviscid flow) the profile is VR = constant 
whereas in real cases the profile is VR (to some power A) = constant.  Empirical values of A range from 0.5 to 0.6 
(Anthes, 1982, Fletcher, Redmond, Barnes, and Schroeder, 1995).  Physically the result is equivalent to the flow in 
a cylindrical tank of water within which a hollow cylinder rotates.  
 
Note that FFP in Equation 5 is commonly set equal to 1013mB, but the uncertainty in FFP is incorporated into this 
demonstration analysis.  Also, the factor 1.15 is used to convert knots to mph.  The wind velocity function (see 
Figure 6) is given by 
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Figure 7. (x, y) Locations for VTotal = Vθθ + VT 

 
 
Note: x = r cos θ, y = r sin θ, and (cos(θ + π/2), sin(θ + π/2)) is the tangential wind direction. 
 
Footnote on tan-1(θ) “adjustment” to get θ into the correct (0, 2π) range for evaluating VTotal: 
 

 tan-1(y/x) x > 0, y > 0 Quadrant I 
 π + tan-1(y/x) x <0 Quadrants II and III 

2π + tan-1(y/x) x > 0, y < 0 Quadrant IV 
θ = 

π/2 x = 0, y > 0  
 3π/2 x = 0, y < 0  
 undefined x = 0, y = 0  

Vθ, the tangential wind vector is a π/2 rotation of the (x, y) location (see Figure 6).  For “west” moving storms, the 
forward movement represented by the VT vector yields: 
 

VTotal length > Vθ length for (x, y) right of the line of movement 
VTotal length < Vθ length for (x, y) left of the line of movement 

 
Obviously, careful attention to signs of the coordinates of (cos(3 + π/2), sin(3 + π/2)) is essential. 
 
Summary of Calculated Wind Velocities. VTotal was calculated hourly at each vertex in the grid shown in Figure 2 
for each of the n=100 LHS values.  Thus, a total of 5 × 13 × 13hr × 100 samples = 84,500 calculations were made 
for VTotal for both the Category 1 and Category 5 hurricanes.  These calculated values are displayed in histograms 
in Figures 8 and 9 for Category 1 and 5, respectively.  These histograms show that the distribution of VTotal is highly 
skewed. 
 
Summary statistics for the VTotal calculations are given in Table 4.  Tables 5 and 6 list the maximum Category 1 and 
5 wind speeds, respectively, at each vertex of the grid in Figure 1.  Table 7 lists the maximum wind speeds for each 
of the 100 samples.  This table shows that each category of hurricane has max wind speeds consistent with the 
Saffir-Simpson scale given in Table 8.  However, as the frequencies in Table 7 show, not every combination of 
sample input represented by the LHS input vectors for Category 1 produces a maximum wind speed that meets the 
Saffir-Simpson scale for a Category 1 or a Category 5.  This is to be expected as the ranges in Table 1 are 
consistent with the characteristics of Categories 1 or 5.  However, not every possible combination of CP, Rmax, VT, 
and FFP from the ranges in Table 1 guarantees a maximum wind speed consistent with the Saffir-Simpson scale 
for the respective storm category.  Rather, the entire distribution of maximum winds speeds for either a Category 1 
for Category 5 is consistent with maximum winds associated with that category via Saffir-Simpson. 
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Figure 8. Histogram of Calculated VTotal Values for a Category 1 Hurricane 
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Figure 9. Histogram of Calculated VTotal Values for a Category 5 Hurricane 
 
 
 

Table 4. Summary Statistics for VTotal Calculations 
by Hurricane Category 

 
 Category 1 Category 5 
Mean 36.0   54.9 
Standard deviation 13.9   26.8 
Median 31.8   45.6 
Minimum   0.1   10.3 
Maximum 91.1 164.5 
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Table 5. Maximum Wind Speed for Category 1 at Each Grid Vertex Defined in Table 1 
(shaded cells indicated Category 1 wind speeds) 

 
73.3 74.7 75.5 77.8 80.2 81.4 81.6 81.8 83.6 85.4 87.4 88.7 91.1 15N 

71.6 75.2 71.7 71.3 73.1 75.2 76.7 78.6 80.8 84.2 85.2 86.0 83.6 10N 

62.6 65.6 68.9 70.3 70.7 71.5 74.4 73.2 73.6 76.8 81.0 83.4 80.9 5N 

58.1 60.3 62.5 66.6 65.9 68.3 68.9 69.3 71.0 74.8 76.3 78.2 75.3 0 

53.1 55.8 57.1 59.1 62.2 63.3 65.4 64.6 66.2 69.0 72.5 75.2 71.7 -5S 

180 165 150 135 120 105 90 75 60 45 30 15 0  

 
 
 

Table 6. Maximum Wind Speed for Category 5 at Each Grid Vertex Defined in Table 1 
(shaded cells indicated Category 1 wind speeds) 

 
116.7 114.8 115.6 118.4 123.9 127.7 129.1 129.0 131.5 133.8 136.1 138.2 140.3 15N 

140.6 136.7 139.2 142.6 149.9 149.7 151.5 153.7 152.6 157.1 161.1 162.5 164.5 10N 

131.7 134.6 143.5 141.0 143.2 144.1 145.1 148.8 155.4 151.1 155.3 150.3 149.1 5N 

127.1 127.8 124.2 127.8 134.2 136.4 137.2 139.6 143.1 142.4 144.2 147.2 143.0 0 

112.6 117.1 122.7 122.3 123.3 127.9 127.7 132.6 136.1 136.5 139.2 133.0 140.2 -5S 

180 165 150 135 120 105 90 75 60 45 30 15 0  

 
 
 

Table 7. Frequency of Calculated Maximum Wind Speeds for the 100 LHS Input Vectors 
 

Category 1 
 

Category 5 

Max Wind Speed (mph) Frequency Max Wind Speed (mph) Frequency 
WS < 74     8 135 ≤ WS < 140     3 

74 ≤ WS < 80   36 140 ≤ WS < 145   14 
80 ≤ WS < 85   37 145 ≤ WS < 150   29 
85 ≤ WS < 90   17 150 ≤ WS < 155   24 
90 ≤ WS < 95     2 WS ≥ 155   30 

Totals 100  100 
 
 
 

Table 8.  Saffir-Simpson Scale for Hurricane Intensity 
 

Category Speed (mph) CP (mB) Damage 
1 74 ≤ WS < 96 ≥ 980 Minimal 
2 96 ≤ WS < 110 965 to 979 Moderate 
3 110 ≤ WS < 130 945 to 964 Extensive 
4 131 ≤ WS < 155 920 to 944 Extreme 
5 WS ≥ 155 < 920 Catastrophic 
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Table 9. Sample Input Characteristics and VTotal for Category 5 at  (30,0) for t = 1hr 
 

Sample CP Rmax VT FFP VTotal 

1 911.7 10.07 14.16 1013.4 112.0 
2 909.1   7.64 18.15 1012.3 111.4 
3 909.0   8.24 16.85 1012.3 110.4 
… … … … … … 

100 907.9   7.82 14.42 1012.9   99.0 
 
 
A very useful way to show wind patterns throughout the 5 × 13 grid is with a contour plot.  Such a plot provides a 
view of the winds over the entire grid, much as a satellite image does.  Contours of average wind speeds of 60mph, 
80mph, 100mph, 120mph, and 140mph for a Category 5 hurricane are drawn throughout the grid for a given time.  
Figures 10 to 22 present contour plots from t = 0hr to t = 12hr, respectively. 
 
As expected, these contour plots show the highest speed to the right of the path of the hurricane, which has a 
westerly heading.  Moreover, the speed decreases as the hurricane moves over land.  Decay was simulated in this 
demonstration analysis by assuming a 1mB and 3mB hourly increases in CP for Categories 1 and 5, respectively.  
Note the contour for 140mph disappears after 1hr, as does 120mph after 4hr and 100mph after 7hr.   
 
Consideration now moves from the global view of the grid to focus on the behavior of VTotal at a single vertex in the 
grid at a given time.  For example, Table 9 shows a portion of the sampled input characteristics in the LHS and the 
corresponding calculated value of VTotal for the Category 5 hurricane at coordinates (30,0) for t = 1hr.  Since the 
LHS contains 100 different sets of input for the four parameters in Table 1, there will be 100 different values of VTotal 
calculated at each time.  Moreover, there are 1300 calculated values of VTotal over all times at each vertex in the 5 × 
13 grid.  These values can be displayed in various ways to show the variability in VTotal at each time point.   
 
One such display is given in Figure 23 where values of VTotal for a Category 5 at (30, 0) have been plotted as 
cumulative distribution functions (cdfs) for seven different times.  This figure shows the highest winds at 1hr and 
2hr.  The greatest uncertainty (spread) occurs at 2hr (the actual range in wind speeds at 2hr was from 15mph to 
144.2mph).  The reason the range is so wide is that the eye of the storm is located at approximately (30, 0) at t = 
2hr.  The least uncertainty occurs at 12hr.   
 
Figure 24 is similar to Figure 23, except the coordinates have been changed to (30, 10) which is 10mi to the right of 
the storm.  Note the big difference in the cdfs in Figures 23 and 24 for t = 2 hr.  Since the coordinates in Figure 24 
are to the right of the eye of the storm, the wind speeds are not subject to the relative calmness associated with the 
eye and therefore do not have a wide range as was the case at (30, 0).  Displays similar to Figure 23 could be 
made for any of the 65 vertices. 
 
As stated previously, the goal of the sensitivity analysis is to determine the relative influence of CP, Rmax, VT, and 
FFP on the magnitude of VTotal at each time while uncertainty analysis seeks to determine which of these input 
parameters contribute to the uncertainty in VTotal at each time.  Methods for performing a sensitivity analysis will be 
presented first. 
 
Two statistics will be considered as measures of the relative influence on the magnitude of VTotal: (1) partial 
correlation coefficients and (2) standardized regression coefficients.  The calculation of the partial correlation 
coefficient is considered first.  As is shown in the ensuing discussion, these two statistics are both derived from the 
inverse of the correlation matrix and are functionally related. 
 
Partial Correlation Coefficients. Table 3 gave the actual pairwise correlations for the input parameters in Table 1 
based on a LHS of size n=100 for Category 1 and Category 5.  Table 10 is an extension of Table 3 to include the 
pairwise correlations of CP, Rmax, VT, and FFP with VTotal at grid coordinates (30, 0) at t = 1hr.  All calculations in 
Table 10 are based on Equation 1.  The last row in the Category 5 portion of Table 10 shows CP, Rmax, VT, and 
FFP have respective simple correlations of 0.187, 0.696, 0.675, and 0.066 with VTotal.  To assist in interpreting 
these correlations, Figures 25 to 28 present scatterplots of wind speed versus CP, Rmax, VT, and FFP, 
respectively.  Note the indication of a strong relationship between wind speed and Rmax in Figure 25 and with VT 
also in Figure 26.  On the other hand, the scatterplots in Figures 25 and 28 indicate very weak relationships. 
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Figure 10. Contour Plot of Calculated Category 5 Wind Velocities at t = 0hr 
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Figure 11. Contour Plot of Calculated Category 5 Wind Velocities at t = 1hr 
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Figure 12. Contour Plot of Calculated Category 5 Wind Velocities at t = 2hr 
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Figure 13. Contour Plot of Calculated Category 5 Wind Velocities at t = 3hr 
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Figure 14. Contour Plot of Calculated Category 5 Wind Velocities at t = 4hr 
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Figure 15. Contour Plot of Calculated Category 5 Wind Velocities at t = 5hr 
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Figure 16. Contour Plot of Calculated Category 5 Wind Velocities at t = 6hr 
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Figure 17. Contour Plot of Calculated Category 5 Wind Velocities at t = 7hr 
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Figure 18. Contour Plot of Calculated Category 5 Wind Velocities at t = 8hr 
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Figure 19. Contour Plot of Calculated Category 5 Wind Velocities at t = 9hr 
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Figure 20. Contour Plot of Calculated Category 5 Wind Velocities at t = 10hr 
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Figure 21. Contour Plot of Calculated Category 5 Wind Velocities at t = 11hr 
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Figure 22. Contour Plot of Calculated Category 5 Wind Velocities at t = 12hr 
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Figure 23. Cumulative Distributions for VTotal at Coordinates (30, 0) for a Category 5 at Various Times 
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Figure 24. Cumulative Distributions for VTotal at Coordinates (30, 10) for a Category 5 at Various Times 
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Figure 25. Scatterplot of Wind Speed vs CP at (30, 0) for a Category 5 at t = 1hr 
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Figure 26. Scatterplot of Wind Speed vs Rmax at (30, 0) for a Category 5 at t = 1hr 
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Figure 27. Scatterplot of Wind Speed vs VT at (30, 0) for a Category 5 at t = 1hr 
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Figure 28. Scatterplot of Wind Speed vs FFP at (30, 0) for a Category 5 at t = 1hr 

 
 

Table 10. Simple Correlations among CP, Rmax, VT, and FFP and VTotal for the 
      Category 1 and Category 5 Analysis at Grid Coordinate (30, 0) at t = 1hr 

 
 Category 1  Category 5 
CP 1.000 0.250 0.006 -0.007 -0.400  1.000 0.490 -0.006 0.007 0.187 
Rmax 0.250 1.000 -0.013 0.025 -0.377  0.490 1.000 -0.012 -0.013 0.696 
VT 0.006 -0.013 1.000 0.007 -0.602  -0.006 -0.012 1.000 -0.007 0.675 
FFP -0.007 0.025 0.007 1.000  0.260  0.007 -0.013 -0.007 1.000 0.066 
VTotal -0.400 -0.377 -0.602  0.260  1.000   0.187  0.696  0.675  0.066 1.000 
 CP Rmax VT FFP VTotal  CP Rmax VT FFP VTotal 

 
 
Rmax and VT have the highest simple correlation with VTotal in Table 10, which might lead one to believe that these 
two parameters have the most influence on VTotal.  That may indeed turn out to be true, but the answer is not as 
straightforward as the simple correlations might lead one to believe since Cp and Rmax are also correlated with 
each other.  It is necessary to determine what correlation remains between Cp and VTotal after their respective 
correlations with Rmax are accounted for.  The measure that is used to provide the needed information is partial 
correlation. 
 
Partial correlation differs from simple correlation in that it measures the degree of linear relationship between a 
given input parameter in Table 1 (denoted as Xj) and the wind velocity (denoted as Y) following an adjustment to 
remove the linear effect of the other three input parameters.  Partial correlations coefficients (PCC) were calculated 
for each input parameter in Table 1 at each of the 65 vertices in the 5 × 13 grid at each time point (t = 0, 1, 2, …, 
12hr) as a measure of their relative influence on the magnitude of VTotal.  The calculation of these partial 
correlations is now considered in detail. 
 
One of the more efficient ways of calculating PCCs is based on the inverse of the simple correlation matrix C.  The 
inverse of the correlation matrix C is denoted by C-1.  The product of C and C-1 is the identity matrix (a matrix with  
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Figure 29. General Form of the Inverse of a Correlation Matrix 

 
 
ones along the main diagonal from the upper left-hand corner to the lower right-hand corner with zeros elsewhere).  
The inverse of a correlation matrix C is shown in general terms in Figure 29. 
 
The PCC for Xj and Y is obtained directly from C-1 as 
 

yyjjjyyx cccPCC
j

−=                                                                        (9) 

 
Example 1. The inverse of the correlation matrix in Table 10 is given in Table 11.  Using Equation 9 with Table 11, 
the PCCs are found as follows: 
 

Table 11. Inverse of the Category 5 Correlation Matrix Given In Table 10 
 

CP 5.4212 -16.3256 -13.3241 -0.97613 19.4112 
Rmax -16.3256 61.2154 50.8599 3.79309 -74.1506 
VT -13.3241 50.8599 44.1520 3.23023 -62.9367 
FFP -0.9761 3.7931 3.2302 1.24326 -4.7206 
VTotal 19.4112 -74.1506 -62.9367 -4.72062 91.7931 
 CP Rmax VT FFP VTotal 

 
 
The PCC for CP and VTotal is found from Equation 9 as: 
 

( )( )
8710

79319142125

411219
.

..

.
, −=

−
=

TotalVCPPCC  

 
Likewise, the PCC for Rmax and VTotal is found as: 
 

( )( )
9890

793191215461

150674
.

..

).(
max, =

−−
=

TotalVRPCC  

 
The PCC for VT and VTotal is found as: 
 

( )( )
9890
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.

..

).(
, =

−−
=

TotalT VVPCC  

 
Finally, the PCC for FFP and VTotal is found as: 
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793191243261
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.
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=

TotalVFFPPCC  
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Parameters with partial correlations close to 0 have very little, if any, influence on the magnitude of the model 
output response.   The above calculations indicate that FFP has the least relative influence on VTotal.  Parameters 
with PCCs close to 1 have a strong positive effect on the model output response.  In this example, Rmax and VT 
have nearly identical PCCs that are very close to 1, indicating that VTotal increases as these parameters increase. 
On the other hand, parameters with PCCs correlations close to -1 have a strong negative effect on the model 
output response, which means that VTotal will decrease as these parameters increase.  Such is the case with CP, 
which has a strong negative partial correlation close to -1.  Overall, Rmax and VT have the most effect on the 
magnitude of VTotal at coordinates (30, 0) with t = 1hr.  Next in order is CP followed by FFP.  The corresponding 
PCC calculations for Category 1 were: -0.473, -0.469, -0.729, and 0.425. 
 
Standardized Regression Coefficients. A model that regresses VTotal on CP, Rmax, VT, and FFP could be fit at 
each vertex in the 5 × 13 grid for each time point.  Such a model would have the following form: 
 

VTotal = β0 + β1CP + β2Rmax + β3VT + β4FFP                                                (10) 
 
where the coefficients β0, …, β4 are determined by least squares calculations.  It would be tempting to use these 
coefficients as measures of relative influence, i.e. large values have lots of influence and small values have very 
little influence.  The fallacy in this suggestion lies in the fact that the coefficients reflect the units for each parameter: 
CP and FFP are measured in mB while Rmax and VT are measured in miles and mph, respectively. 
 
This does not imply that the regression approach is without merit as the units dilemma is easily resolved by using 
standardized regression coefficients (SRC), which permit comparison of the coefficients in common or standardized 
units.  The value bj in C-1 in Figure 29 is the standardized regression coefficient for Xj corresponding to the 
regression model in Equation 10.  The value R2

y is the percentage of variation in Y explained by the regression on 
X1, X2, X3, and X4.  The value R2

xj is the coefficient of determination from regressing Xj on Y and the remaining Xs. 
 
Example 2. The SRCs are found from Table 11 by multiplying the reciprocal of the element in the lower right-hand 
corner of C-1 (91.7931) times the first four elements in the last row of C-1 as follows: 
 
The SRC for CP is found: 
 

2120
793191
411219

.
.

.
−=

−
=CPSRC  

 
Likewise, the SRC for Rmax is found as: 
 

8080
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150674

.
.

).(
max =

−−
=RSRC  

 
The SRC VT is found as: 
 

6860
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936762

.
.

).(
=

−−
=

TVSRC  

 
Finally, the SRC for FFP is found as: 
 

0520
793191
720624

.
.

).(
=

−−
=FFPSRC  

 
Parameters with SRCs close to 0 have very little, if any, influence on the magnitude of the model output response.   
The above calculations indicate that FFP with a SRC = 0.052 has the least influence on VTotal.  Parameters with 
positive SRCs have a positive effect on the model output response.  In this example, Rmax has the highest positive 
SRC followed by VT.  Note that while the PCCs for these two parameters were identical, the SRCs differ somewhat.  
As with PCCs, parameters with negative SRCs have a negative effect on the model output response.  The SRC for 
CP = -0.212 indicates that CP has a negative effect on VTotal.  Overall, Rmax and VT have the most effect on the 
magnitude of VTotal at coordinates (30, 0) with t = 1hr.  Next in order is CP followed by FFP.  Note that this ordering 
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is in agreement with the results for PCCs.  This is not just happenstance, as the PCC and SRC are functionally 
related as shown in the following equation. 
 
Using Equation 9 and the elements in the last row of C-1, the PCC can be written as 
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This shows the functional relationship between PCC and SRC (denoted as bj in Equation 11).  The corresponding 
SRC calculations for Category 1 were: -0.315, -0.312, -0.605, and 0.267. 
 

Table 12.  Summary of the Influence of the Four Input Parameters as Measured 
by SRCs at Coordinate (30, 0) over the 12hr Time Period 

 
 Category 1 Category 5 
CP • Maximum influence at t=0hr and later hrs 

• Almost no influence at t=2hr when the eye of 
the storm is at (30, 0) 

• Increasing negative influence for t ≥ 3hr  

• Maximum influence at t=0hr 
• Almost no influence at t=2hr when the eye of the 

storm is at (30, 0) 
• Nearly constant for t ≥ 4hr with a slight negative 

influence — less than for Category 1 
Rmax • Maximum influence at t=0hr 

• Switches to negative at t=1hr and 2hr as the 
eye of the storm is at (30, 0) 

• Increasing strong positive influence for t > 3hr 

• Maximum influence at t=0hr 
• Strong positive at t=1hr 
• Switches to slightly negative as the eye of the 

storm is at (30, 0) 
• Increasing strong positive influence for t > 2hr 

VT • Slightly negative influence at t=0hr 
• Strong negative influence at t=1hr 
• No influence at t=2hr as the hurricane 

approaches (30, 0) 
• Strong positive influence at t=3hr 
• Switches to a strong negative influence for 

t=4hr and then gradually increases to no 
influence at t=11hr and finishes slightly positive 

• No influence on at t=0hr 
• Strong positive influence at 1hr as the hurricane 

approaches (30, 0) 
• No influence at t=2hr 
• Switches to a strong negative influence after the 

storm passes by (30, 0) 

FFP • Positive influence at t=0hr 
• No influence at t=1hr and then gradually 

increases in influence over the remainder of 
the 12hr time period 

• FFP is nearly constant throughout the 12hr time 
period and has very little influence 

 
 
Display of Sensitivity Measures versus Time. While Examples 1 and 2 utilized only one time period at a single 
grid point, it is very much of interest to see how the influence of CP, Rmax, VT, and FFP relative to VTotal changes 
over time.  Figures 30 and 31 show respective plots of the Category 1 and 5 SRCs for each of the four input 
parameters at coordinates (30, 0) for t = 0hr, 1hr, …, 12hr. 
 
The changing nature of the curves in Figures 30 and 31 makes it very clear why the temporal aspect of VTotal must 
be considered when performing a sensitivity analysis.  While the SRCs plotted in Figures 25 and 26 at t = 1hr 
match those calculated in Example 2, these values change dramatically at t = 2hr when the eye of the storm is very 
close to being centered at the coordinates (30, 0) that were used in Example 2.  The relative influence of each of 
the four input parameters at (30, 0) versus time is summarized in Table 12. 
 
Appendix B contains five complete sets of graphs similar to Figures 30 and 31 for the following coordinates: 
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Figure 30. Standardized Regression Coefficients vs. time at Grid Coordinates (30, 0) for Category 1 
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Figure 31. Standardized Regression Coefficients vs. time at Grid Coordinates (30, 0) for Category 5 
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Figure 32. Surrogate Damage Function Used in Demonstration Analysis 

 
 

• 5mi south of the path of the eye: (0, -5) to (180, -5) 
• Path of the eye: (0, 0) to (180, 0) 
• 5mi north of the path of the eye: (0, 5) to (180, 5) 
• 10mi north of the path of the eye: (0, 10) to (180, 10) 
• 15mi north of the path of the eye: (0, 15) to (180, 15) 

 
Conversion to Loss Cost. The analyses to this point have demonstrated sensitivity analyses for calculated VTotal 
values utilizing the four input characteristics presented in Table 1.  Specifically, the goal of these analyses was to 
show the impact of CP, Rmax, VT, and FFP on VTotal.  In this section, VTotal is converted to loss cost using a simple 
lost cost function to see how the sensitivity analysis results change with the output variable. 
  
Assume there is a $100,000 structure at each vertex in the grid with a 1% or $1000 deductible. For simplicity, 
assume this applies to all vertices whose X coordinate is ≥ 15mi, as hurricane monitoring commenced 15mi 
offshore.  Apply the following cubic damage function to convert VTotal to percentage damage: 
 

3

50140
50









−
−

= TotalV
Damage%                                                                          (12) 

 
This surrogate damage function appears in graphical form in Figure 32. 
 
Note that this expression is a surrogate for an actual, operational damage function.  The intent is not to use a 
function that meets FCHLPM standards, but rather acts in the place of such a function to illustrate the techniques 
and reveal the types of graphical and numerical analyses possible with the approach.   
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The loss cost function is developed from the damage function in Equation 12 as follows: 
 

1. If %Damage is ≤ 1%, total loss = $0.  This corresponds to VTotal ≤ 69.39mph. 
2. If %Damage is ≥ 50%, total loss = $99,000.  This corresponds to VTotal ≥ 121.43mph. 
3. Otherwise, total loss = %Damage × $100,000 - $1,000 

 
Loss costs can be summed at a fixed time t over all vertices with X ≥ 15mi (i.e. 60 vertices) to get total loss cost at 
time t.  Moreover, sensitivity analyses could be performed to determine the influence of the four input parameters in 
Table 1 on hourly loss costs in the same manner that was just illustrated for VTotal.  However, hourly loss costs are 
of limited utility since the maximum total loss cost during the 12hr period is the statistic of primary interest.  
 
Maximum total cost is simply the highest loss incurred during the 12hr (assuming no duration effects).  Since each 
of the n=100 LHS input vectors has an associated maximum total loss cost, the sensitivity analysis is performed on 
this statistic as the response variable corresponding to each of the n=100 sets of LHS input characteristics.  Figures 
33 and 34 show these n=100 responses as estimated cumulative distribution functions for total loss cost for 
Category 1 and 5, respectively.  Figure 35 presents a contour plot of total loss cost for Category 5. 
 

Table 13. SRCs for Total Loss Cost by Category of Hurricane 
 

 Category 1  Category 5 
 CP Rmax VT FFP  CP Rmax VT FFP 

SRC -0.759 -0.026 0.017 0.441  -0.614 0.887 0.076 0.147 
Rank 1 3 4 2  2 1 4 3 

 
 
The SRCs for the maximum total loss cost are found following the procedures outline in Example 2.  Table 13 gives 
the SRCs and their corresponding ranks from 1 (most influential SRC) to 4 (least influential SRC).  Note that CP 
and FFP are most influential for Category 1 while Rmax and CP are most influential for Category 5. 
 
One final comment to close the discussion of SA for total loss cost is now provided.  The previous SA for VTotal 
focused on individual vertices at individual time points t = 0hr to 12hr.  As such, the four input parameters were 
directly related to VTotal through the Rankine-vortex function and the SA identified these relationships.  On the other 
hand, the SA results for total loss cost do not focus on individual wind speeds at a given vertex at a given time 
point.  Rather, much information is folded together prior to performing the SA.  To explain, the loss cost function 
greatly changed the nature of the relationship between the input parameters and the output by setting any wind 
speed ≤ 69.39mph to $0 and any speed ≥ 121.43mph to $99,000.  Next, an additional level of folding of the data 
occurs when only the maximum loss cost over the 12hr period is used.  Obviously, this maximum occurs at different 
times for different combinations of input parameters in the LHS.  A final level of folding occurs when these maxima 
are summed over the entire grid.  Hence, the SA results for total loss cost require careful interpretation.  On the 
other hand, temporal variation of potential damage and loss is probably subordinate to the estimated total losses. 
 
Uncertainty Analysis. As stated in the Introduction, the goal of uncertainty analysis is to quantify the contributions 
of the input parameters to the uncertainty in VTotal.  This goal is frequently misinterpreted as meaning a 
quantification of the uncertainty in VTotal or the development of confidence intervals about the mean or distribution 
function for VTotal.  An extended simple example is used to convey the goal of uncertainty analysis.  Consider the 
following simple model: 
 

Y = X1 + X2 + X3 + X4                                                                (13) 
 
These X’s have associated uncertainties that are characterized with uniform distributions in the same sense as was 
done for the input parameters in Table 2 with triangular distributions.  Specifically, X1 is distributed uniformly on the 
interval from 0 to 1, which is denoted as X1 ~ U(0, 1).  Similarly, X2 ~ U(0, 2), X3 ~ U(0, 3) and X4 ~ U(0, 4).  The 
expected (mean) value of a random variable X with a uniform distribution on the interval (a, b) is given as: 

2
ba

XE
+

=)(                                                                                   (14) 

 
and the variance is found as 
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Figure 33. Distribution of Total Loss Cost for a Category 1 Hurricane 
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Figure 34. Distribution of Total Loss Cost for a Category 5 Hurricane 
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Figure 35. Distribution of Total Loss Cost for a Category 5 Hurricane 
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Applying Equations 14 and 15 to X1, X2, X3, and X4 yields the following means and variances: 
 

 E(X) V(X) 
X1 0.5 1/12 
X2 1.0 4/12 
X3 1.5 9/12 
X4 2.0 16/12 

 
The mean or expected value of Y is found directly from these values and Equation 13 as 
 

E(Y) = E(X1) + E(X2) + E(X3) + E(X4)                                                        (16) 
or 

 
E(Y) = 0.5 + 1.0 + 1.5 + 2.0 = 5.0 

 
Likewise, the variance of Y is found as  
 

V(Y) = V(X1) + V(X2) + V(X3) + V(X4)                                                          (17) 
or 
 

V(Y) = (1/12) + (4/12) + (9/12) + (16/12) = 30/12 = 2.50 
 
This latter value is a measure of the variability in Y, which could also be expressed in terms of the standard 
deviation, 1.58. 
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When Y is a function of the values of X, such as given in Equation 13, there is a well known result in mathematical 
statistics (e.g. Parzen, 1962) whereby the unconditional variance of a random variable can be expressed in terms 
of the conditional variance as follows: 
 

[ ] ( )[ ]jXjX XYEVarXYVarEYVar
jj

|)|()( +=                                                    (18) 

 
In words, the variance of Y is equal to the mean of the conditional variance plus the variance of the conditional 
mean.  The first term on the right-hand side of Equation 18 is the expected value of the variance of Y taken over the 
variable Xj.  If Equation 18 is rewritten as 
 

[ ] ( )[ ]jXjX XYEVarXYVarEYVar
jj

|)|()( =−                                                    (19) 

 
then the right-hand side represents the expected reduction in the variance of Y due to ascertaining the value of Xj.  
The contribution to the uncertainty in Y attributable to Xj or the expected percentage reduction in V(Y) due to 
knowing Xj is given in Iman (1987) as: 
 

Expected percentage reduction in Var(Y)
[ ]( )

%
)(

|
100×=

YVar

XYEVar j                                                (20) 

 
Since the exact functional form of the simple model and its inputs are known in this simple example, the answer to 
the uncertainty question is straightforward.  Equation 20 gives the following expected percentage reductions in the 
V(Y) for X1 to X4 using the above variances: 
 

Input Parameter Expected Percentage Reduction 
 when the Input Parameter is Known 

X1  (1/12)/(30/12)×100%   =   3.3% 
X2  (4/12)/(30/12)×100%   = 13.3% 
X3  (9/12)/(30/12)×100%   = 30.0% 
X4  (16/12)/(30/12)×100% = 53.3% 

 
Thus, the expected reduction in the V(Y) is only 3.3% if the value of X1 is known with certainty, but the expected 
reduction in the V(Y) for X4 is 53.3%.  If the goal is to reduce the variability in Y, then the biggest payoff is 
associated with a reduction in the variability in X4.  That is, research dollars invested in better knowledge of X4 has 
great potential to reduce the uncertainty in Y than do any of the other input parameters.  Note that these results 
have nothing to do with confidence intervals for the variability in Y, which as mentioned previously, is a frequent 
misinterpretation of uncertainty analysis. 
 
Uncertainty Analysis Results for VTotal. Actual computer models are greatly removed from the simplicity of the 
model in Equation 13, so methods have to be devised to estimate the expected percentage reduction from 
Equation 20 based on actual computer input and output.  One such method given in Iman (1987) is now outlined.  
Iman refers to this measure as uncertainty importance. 
 
Step 1. The variance of the output Y (such as VTotal) from a hurricane model (i.e. the denominator of Equation 18) is 
estimated from n computer runs using randomly selected values of the input parameters.  In particular, let X 
represent an n × 4 matrix of sample input characteristics to be utilized with the computer model.  In the current 
analysis for VTotal, the number of computer runs is n=100. 
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                                                                 (21) 

 
The first run of the model is based on the sample inputs in the first row of X, the second run utilizes the sample 
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inputs in the second row of X, and so on until the nth run uses the sample inputs in the last or nth row of X. 
 
Step 2. Let XM represent a vector of means of the four input parameters: 
 

[ ]4321 XXXXX M =                                                                        (22) 
 
Note: these means are usually estimated from sample inputs in the columns of the matrix X.   
 
Step 3. Generate a new matrix of inputs X1* by replacing the last three entries in each row of X with their 
corresponding means from the vector XM given in Equation 22.  The new matrix appears as follows: 
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                                                                 (23) 

 
Step 4. Run the model using the matrix X1* in Equation 23 and calculate V(Y).  Denote this variance as V(E[Y|X1]), 
which is the numerator in Equation 20.  
 
Step 5. Repeat steps 3 and 4 for X2 where the 1st, 3rd, and 4th columns of X are replaced by their respective means 
in the vector XM.  Denote the resulting variance estimate as V(E[Y|X2]). 
 
Step 6. Repeat steps 3 and 4 for X3 where the 1st, 2nd, and 4th columns of X are replaced by their respective means 
in the vector XM.  Denote the resulting variance estimate as V(E[Y|X3]). 
 
Step 7. Repeat steps 3 and 4 for X4 where the 1st, 2nd, and 3rd columns of X are replaced by their respective means 
in the vector XM.  Denote the resulting variance estimate as V(E[Y|X4]). 
 
Step 8. Substitute the estimates in Steps 4-7 into Equation 20 with the estimate of V(Y) from Step 1 to estimate the 
expected percentage reductions for X1 to X4.  
 
These steps are now illustrated using the simple model in Equation 13.  Random samples of size n=100 were 
obtained for each of the X’s based on their respective uniform distributions.  Hence the X matrix has 100 rows and 
4 columns.  The resultant simulated mean for Y was 4.87 with a variance of 2.163.  The respective variance 
estimates in Steps 4 to 7 were: 0.093, 0.316, 0.805, and 1.108.  The expected percentage reductions are found by 
substituting these values into Equation 18 as follows. 
 

Parameter V(E[Y|Xj]) / V(Y)*100% True Value 
X1 (0.093)/(2.163)×100% =   4.3%  3.3% 
X2 (0.316)/( 2.163)×100% = 14.6% 13.3% 
X3 (0.805)/( 2.163)×100% = 37.2% 30.0% 
X4 (1.108)/( 2.163)×100% = 51.2% 53.3% 

 
These estimates are reasonably close to the true values and improve with increased values of n as illustrated in the 
following results for n = 1,000 and n = 10,000. 
 

Parameter n=100 n=1,000 n=10,000 True Value 
X1   4.3%   3.5%   3.3%   3.3% 
X2 14.6% 13.2% 13.2% 13.3% 
X3 37.2% 31.3% 29.7% 30.0% 
X4 51.2% 55.6% 52.9% 53.3% 
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Uncertainty analysis for VTotal is obviously more involved than this simple example since an UA can be performed at 
each of the 13 time points for each of the 65 vertices in the grid (13 × 65 = 845 analyses).  Moreover, the Rankine-
vortex function for calculating VTotal is considerably more complicated than the simple model in Equation 13.   
 
As was the case with sensitivity analysis, it is very much of interest to see how CP, Rmax, VT, and FFP influence 
the uncertainty in VTotal over time.  Figures 36 to 49 show plots of the expected percentage reductions in the 
variance of VTotal for Category 1 and 5 hurricanes for each of the four input parameters at the following pairs of 
coordinates along the path of the eye of the hurricane: (0, 0), (15, 0), (30, 0), (45, 0), (60, 0), (75, 0) and (180, 0). 
 
Figures 36 and 37 show that VT is the only contributor to uncertainty in VTotal at (0, 0) at t = 0hr.  This result is 
correct as the eye of the hurricane is at (0, 0) at t = 0hr so that only VT impacts VTotal.  At t = 1hr, the eye has moved 
west of (0, 0) and the influence of VT is greatly reduced while Rmax becomes a significant contributor to the 
uncertainty in VTotal.  This result is also consistent with the physical reality.  VT is an important contributor to the 
uncertainty during the remaining times for a Category 1 hurricane as its influence decreases and then increases.  
VT is also an important contributor to the uncertainty for a Category 5 hurricane, but has decreasing influence 
during the later stages of storm progression.   
 
The contribution of Rmax increases when the contribution of VT decreases and vice versa for both Category 1 and 
Category 5 (see comments accompanying Equation 24).  The contribution of CP to the uncertainty in VTotal at (0, 0) 
for Category 1 gradually increases and actually surpasses that of VT at t = 6hr before starting to decrease at t = 9hr.  
The contribution CP increases over time for a Category 5 but is much less than for a Category 1.  FFP makes a 
significant contribution to the uncertainty in VTotal at (0, 0) throughout the 12hr period for a Category 1.  The 
contribution of FFP increases throughout the 12hr period for a Category 5, but is much less than for a Category 1. 
 
Unlike the result in Figures 36 and 37, where VT was the only contributor to uncertainty at t = 0hr, Figures 38 and 
39 show that Rmax is the main contributor to uncertainty at (15, 0) at t = 0hr.  This is reasonable since (15, 0) is 
directly west of the eye of the hurricane at t = 0hr.  At t = 1hr, the eye has moved to approximately (15, 0) and the 
results are similar to those in Figures 36 and 37 at t = 0hr, with VT being the only contributor to the uncertainty in 
VTotal.  The relative contributions for t ≥ 2hr are similar to those in Figures 36 and 37 with the exception that the 
magnitude of the contribution from VT has increased while the contribution of Rmax has decreased. 
 
One interesting result occurs in Figure 39 where the contribution from VT at t = 0hr is 118.7%.  The interpretation of 
this result is that the uncertainty in VTotal actually increases based on the 8-step calculation procedure outlined 
above.  Recall that the sample means were used in Step 2 and 3 as shown in Equations 22 and 23.  The 
calculations for expected percentage reduction are sensitive to the type of statistic used in these steps.  For 
example, rather than using the means in Equation 22, the minimums or maximums could be used.  Use of these 
values would certainly change the relative contributions on the four input parameters.  In fact, use of the minimums 
and maximums is one possible way of bounding the range of the contributions to uncertainty. 
 
Figures 40 to 49 show that the general patterns of Figures 38 and 39 continue with the relative contributions of VT 
and Rmax determined by the position of the grid vertex relative to the position of the eye at time t. 
 
As mentioned above, the graphs in Figures 36 to 49 appear to exhibit a tradeoff pattern similar to what one might 
expect in a zero sum game.  That is, the sum of the four contributions at any time is close to 100%.  This pattern is 
more apparent for the Category 5 graphs where the roles of VT and Rmax appear to be acting in concert.  The 
reason for this behavior is that the wind speeds produced by the Rankine-vortex model are very closely 
approximated by the following simple linear model: 
 

VTotal = β0 + β1CP + β2Rmax + β3VT + β4FFP                                               (24) 
 
This model explains the following percentage of variation in VTotal at (30, 0) for each value of t. 
 

0hr 1hr 2hr 3hr 4hr 5hr 6hr 7hr 8hr 9hr 10 hr 11hr 12hr 
99.6% 98.8% 4.2% 25.5% 92.1% 94.4% 95.1% 95.2% 95.2% 95.0% 94.8% 94.4% 94.2% 

 
Since the percentages are so high, except when the eye of the storm is close to (30, 0), the sum of the 
contributions to the variation in VTotal will be very close to 100%, which explains the “zero-sum” patterns in Figures 
36 to 49.  
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Figure 36. Expected Percentage Reductions in the Var(VTotal) for a Category 1 Hurricane 

          versus Time at Coordinate (0,0) 
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Figure 37. Expected Percentage Reductions in the Var(VTotal) for a Category 5 Hurricane 

          versus Time at Coordinate (0,0) 
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Figure 38. Expected Percentage Reductions in the Var(VTotal) for a Category 1 Hurricane 

          versus Time at Coordinate (15,0) 
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Figure 39. Expected Percentage Reductions in the Var(VTotal) for a Category 5 Hurricane 

          versus Time at Coordinate (15,0) 



Professional Team Demonstration Uncertainty/Sensitivity Analysis 

Southwest Technology Consultants                                                      September 2001                                                                              Page  34 

1211109876543210

125

100

75

50

25

0

Time (hr)

E
xp

ec
te

d
 P

er
ce

nt
ag

e 
R

ed
uc

tio
n

Grid 30, 0

Cp
Rmax
Vt
FFP

 
Figure 40. Expected Percentage Reductions in the Var(VTotal) for a Category 1 Hurricane 

          versus Time at Coordinate (30,0) 
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Figure 41. Expected Percentage Reductions in the Var(VTotal) for a Category 5 Hurricane 

          versus Time at Coordinate (30,0) 
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Figure 42. Expected Percentage Reductions in the Var(VTotal) for a Category 1 Hurricane 

          versus Time at Coordinate (45,0) 
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Figure 43. Expected Percentage Reductions in the Var(VTotal) for a Category 5 Hurricane 

          versus Time at Coordinate (45,0) 
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Figure 44. Expected Percentage Reductions in the Var(VTotal) for a Category 1 Hurricane 

          versus Time at Coordinate (60,0) 
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Figure 45. Expected Percentage Reductions in the Var(VTotal) for a Category 5 Hurricane 

          versus Time at Coordinate (60,0) 
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Figure 46. Expected Percentage Reductions in the Var(VTotal) for a Category 5 Hurricane 

          versus Time at Coordinate (75,0) 
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Figure 47. Expected Percentage Reductions in the Var(VTotal) for a Category 5 Hurricane 

          versus Time at Coordinate (75,0) 
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Figure 48. Expected Percentage Reductions in the Var(VTotal) for a Category 1 Hurricane 

          versus Time at Coordinate (180,0) 
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Figure 49. Expected Percentage Reductions in the Var(VTotal) for a Category 5 Hurricane 

          versus Time at Coordinate (180,0)  
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Table 14.  Summary of the Contribution of the Four Input Parameters to the Uncertainty 
 in VTotal at Coordinate (30, 0) over the 12hr Time Period 

 
 Category 1 Category 5 
CP • Contribution decreases to t=2hr when the eye 

of the storm is located approximately at (30, 0) 
• Increases throughout the remaining times, 

reaching a maximum of 46.5% at t=11hr 
• Relative contribution of CP is much greater 

throughout for a Category 1 than for a 
Category 5  

• Contribution decreases to t=2hr when the eye of 
the storm is located approximately at (30, 0) 

• Increases throughout the remaining times, 
reaching a maximum of 8.8% at t=12hr 

• Relative contribution of CP gradually increases 
throughout the remaining times but remains less 
than for a Category 1 

Rmax • Maximum contribution (77.2%) at t=0hr 
• Decreases to 0% contribution at t=2hr when 

the eye of the storm is located approximately at 
(30, 0) 

• Contribution increases similar to that of CP for  
t  > 3hr to a max of 38.9% 

• Contribution is much less that for a Category 5 

• Maximum contribution (120.0%) at t=0hr 
• Quickly changes to 65.9% at t-1hr 
• Decreases to 0% at t=2hr when the eye of the 

storm is located approximately at (30, 0) 
• Contribution increases for t > 3hr reaching a 

maximum of 71.6% at t=12hr 
• Contribution is greater than for a Category 1. 

VT • Contribution increases from 4.0% at t=0hr to 
100.5% at t=4hr 

• Decreases to 17.8% at t=11hr and then 
increases to 21.7% at t=12hr 

• Contribution increases from 0.9% at t=0hr to 
97.6% at t=2hr 

• Decreases to 39.1% at t=12hr 

FFP • Pattern is similar to that for CP and Rmax, but 
lower in magnitude with a contribution of 11.1% 
at t=0hr and 16.0% at t=12hr 

• Contribution FFP is nearly constant throughout 
the 12hr time period and has very little influence 
ranging from 0.7% at t=0hr to 1.0% at t=12hr 

 
 
Table 12 presented a summary of the SA results at coordinate (30, 0).  Table 14 contains a similar summary for the 
UA results at (30, 0).  Figures 40 and 41, which give the UA results for (30, 0), are useful in interpreting the 
summaries in Table 14. 
 
Appendix C contains five complete sets of graphs similar to Figures 36 to 49 for the following coordinates: 
  

• 5mi south of the path of the eye: (0, -5) to (180, -5) 
• Path of the eye: (0, 0) to (180, 0) 
• 5mi north of the path of the eye: (0, 5) to (180, 5) 
• 10mi north of the path of the eye: (0, 10) to (180, 10) 
• 15mi north of the path of the eye: (0, 15) to (180, 15) 

 
Rankings of the Input Parameters. The relative importance of the four input parameters as determined by the SA 
and UA for (30, 0) can be summarized by a simple ranking of each measure from 1 (most important) to 4 (least 
important).  Table 15 presents a side-by-side comparison of the SA and UA rankings of the input parameters by 
time and storm category.   
 
Equation 3 was used to compute simple correlation coefficients (a.k.a., rank correlation) for the sets of rankings in 
Table 15 as a measure of agreement between the two sets.  These correlations appear in the “Corr” column of that 
table.  Five of the 13 sets of rankings for Category 1 show perfect agreement (correlation = 1.00) while nine of the 
Category 5 sets have perfect agreement.  The negative correlation at t = 2hr for Category 5 occurs when the 
approximate location of the eye of storm is (30, 0).  The corresponding correlations for Category 5 are frequently 
higher than those for Category 1. 
 
Table 16 is similar in construction to Table 15 with the difference being that the rankings are compared by hurricane 
category first for SA and then again for UA.  The SA correlations are low during the early hours of the hurricanes 
and then increase to perfect correlation from t = 5hr to 9hr and then decrease to 0.  The UA correlations are either 1 
or close to 1 until t = 11hr, where they fall off abruptly. 
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The reader is cautioned not to attempt to generalize the results in Tables 13 and 16 for (30, 0), which is directly on 
the path of the eye as these rankings are affected by the location of the grid vertex.  Two other sets of coordinates 
to the right of the hurricane, (15, 10) and (30, 10), have been provided for the reader to make similar comparisons.  
These rankings and correlations are given in Tables 17 to 20. 
 
There are many comparisons that could be made among the rankings in Tables 15 to 20, but only the following 
brief observations are presented.   
 

• All rankings generally have FFP in either 3rd or 4th place 
• There is better agreement between the rankings for the two set of coordinates to the right of the hurricane 

than there is between these rankings and those directly on the path of the eye 
• VT and Rmax are the most important input variables for Categories 1 and 5 at (30, 0), but CP is much 

closer to these two parameters for a Category 5 than for  a Category 1 Rmax is the most important variable 
for Category 1 at (15, 10) followed by CP and VT 

• Rmax is the most important variable for Category 5 at (15, 10) followed closely by VT with CP a distant third 
• Rmax is the most important variable for Category 1 at (30, 10) followed closely by CP and VT 
• Rmax and VT are the most important input variables for Category 5 at (30, 10) with CP a distant third 

 
The discussion of uncertainty analysis concludes with a revisit to loss cost considered in the SA presentation. 
 
Uncertainty Analysis for Loss Cost. The loss cost calculations covered earlier were also subjected to an 
uncertainty analysis.  As with SA, loss costs were summed hourly over all vertices with X ≥ 15mi to get total loss 
cost at time t.  An UA could have been performed to determine the influence of the four input parameters in Table 1  
on hourly loss costs in the same manner that was just illustrated for VTotal, but these are of limited utility.  Thus, UA 
will be considered only for maximum total loss cost during the 12hr period.  
 
In particular, the UA was performed on the maximum total loss cost associated with each of the n=100 LHS input 
vectors.  Figures 33 and 34 showed these n=100 responses as estimated cumulative distribution functions for total 
loss cost for Category 1 and 5, respectively.  The contributions of the four input parameters in Table 1 to the 
uncertainty represented in these figures are the focus of the UA for loss cost. 
 
The expected percentage reduction in uncertainty associated with loss cost is calculated by following the eight 
steps that were given previously.  Table 21 summarizes these percentages by hurricane category and also gives 
their corresponding ranks from 1 (most influential) to 4 (least influential).  Note that CP is by far the most influential 
for Category 1, but FFP finishes a strong second.  On the other hand, Rmax is clearly the most influential for 
Category 5 with CP and VT having nearly identical influence.  FFP is the least influential for Category 5. 
 
The rankings in Table 21 for Category 1 are the same as those previously given in Table 13 for the SA.  The 
Category 5 results differ only in having the ranks of 3 and 4 reversed in these two tables. 
 
Category 1 results in Tables 13 and 21 are particularly noteworthy since FFP was near the bottom of the rankings 
in the SA and UA for VTotal.  The loss cost results indicate that parameters that were not particularly influential for 
wind speed can be influential for loss cost.   One possible explanation for this behavior is that the loss cost function 
greatly changes the nature of the relationship between the input parameters and the output by setting any wind 
speed ≤ 69.39mph to $0 and any wind speed ≥ 121.43mph to $99,000.  It may be that the wind speeds that are not 
subjected to these truncations for a Category 1 hurricane are influenced by FFP, thus identifying FFP as influential. 
 
The sensitivity of loss cost to FFP for a Category 1 hurricane is shown in Figure 50.  The cumulative distribution 
function (cdf) for loss cost for a Category 1 hurricane previously given in Figure 33 is repeated in this figure with the 
label “LHS.”  Recall that this cdf was produced by allowing FFP to vary according to a triangular distribution 
between 1010mB and 1016mB with a mean of 1013mB.  The cdf labeled “1013mB” in Figure 50 corresponds to 
holding FFP fixed at 1013mB (this is the fixed value typically used for far field pressure). 
 
The cdfs for LHS and 1013mB are quite close, since the mean of the triangular distribution was 1013mB and 89% 
of the FFP values in the LHS were between 1011mB and 1015mb, which is a very narrow window for uncertainty in 
FFP.  The cdf in Figure 49 with the label “1016mB” corresponds to holding FFP fixed at 1016mB.  The other cdfs in 
Figure 50 correspond to holding FFP fixed at 1018mB and 1020mB.  The summary statistics for these five cdfs are 
given in Table 22. 
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Table 15. Correlations of the SA and UA Rankings of the Input Parameters 
by Time and Hurricane Category at Coordinates (30, 0) 

 
  Category 1   Category 5 

Time  CP Rmax VT FFP Corr  CP Rmax VT FFP Corr 
0hr SA 2 1 4 3 1.00  2 1 3 3 0.94 

 UA 2 1 4 3   2 1 3 4  
1hr SA 2 3 1 4 0.80  3 1 2 4 1.00 

 UA 3 2 1 4   3 1 2 4  
2hr SA 3 1 2 4 0.26  2 1 4 3 -0.77 

 UA 2 2 1 2   2 2 1 2  
3hr SA 2 4 1 3 0.40  2 3 1 4 0.80 

 UA 3 2 1 4   3 2 1 4  
4hr SA 2 3 1 4 0.80  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
5hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
6hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
7hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
9hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
10hr SA 2 1 3 4 0.40  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
11hr SA 2 1 4 3 0.60  3 1 2 4 1.00 

 UA 1 2 3 4   3 1 2 4  
12hr SA 1 2 4 3 0.80  3 1 2 4 1.00 

 UA 1 2 3 4   3 1 2 4  
 
 

Table 16. Correlations of the Category 1 and 5 Rankings of the Input Parameters 
by Time and Analysis Type at Coordinate (30, 0) 

 
  Sensitivity Analysis   Uncertainty Analysis 

Time  CP Rmax VT FFP Corr  CP Rmax VT FFP Corr 
0hr Cat 1 2 1 4 3 0.94  2 1 4 3 0.80 

 Cat 5 2 1 3 3   2 1 3 4  
1hr Cat 1 2 3 1 4 0.40  3 2 1 4 0.80 

 Cat 5 3 1 2 4   3 1 2 4  
2hr Cat 1 3 1 2 4 0.40  2 2 1 2 1.00 

 Cat 5 2 1 4 3   2 2 1 2  
3hr Cat 1 2 4 1 3 0.80  3 2 1 4 1.00 

 Cat 5 2 3 1 4   3 2 1 4  
4hr Cat 1 2 3 1 4 0.80  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
5hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
6hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
7hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
9hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
10hr Cat 1 2 1 3 4 0.40  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
11hr Cat 1 2 1 4 3 0.40  1 2 3 4 0.40 

 Cat 5 3 1 2 4   3 1 2 4  
12hr Cat 1 1 2 4 3 0.00  1 2 3 4 0.40 

 Cat 5 3 1 2 4   3 1 2 4  
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Table 17. Correlations of the SA  and UA Rankings of the Input Parameters 
by Time and Hurricane Category at Coordinate (15, 10) 

 
  Category 1   Category 5 

Time  CP Rmax VT FFP Corr  CP Rmax VT FFP Corr 
0hr SA 1 2 4 3 0.80  2 1 4 3 1.00 

 UA 2 1 4 3   2 1 4 3  
1hr SA 2 1 4 3 1.00  2 1 4 3 0.80 

 UA 2 1 4 3   2 1 3 4  
2hr SA 1 4 2 3 0.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
3hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
4hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
5hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
6hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
7hr SA 3 1 2 4 0.80  3 1 2 4 0.80 

 UA 3 2 1 4   3 2 1 4  
9hr SA 2 1 3 4 1.00  3 1 2 4 1.00 

 UA 2 1 3 4   3 1 2 4  
10hr SA 2 1 4 3 0.80  3 1 2 4 1.00 

 UA 2 1 3 4   3 1 2 4  
11hr SA 2 1 4 3 0.80  3 1 2 4 1.00 

 UA 1 2 4 3   3 1 2 4  
12hr SA 1 2 4 3 1.00  3 1 2 4 1.00 

 UA 1 2 4 3   3 1 2 4  
 
 
 

Table 18. Correlations of the Category 1 and 5 Rankings of the Input Parameters 
by Time and Analysis Type at Coordinate (15, 10) 

 
  Sensitivity Analysis   Uncertainty Analysis 

Time  CP Rmax VT FFP Corr  CP Rmax VT FFP Corr 
0hr Cat 1 1 2 4 3 0.80  2 1 4 3 1.00 

 Cat 5 2 1 4 3   2 1 4 3  
1hr Cat 1 2 1 4 3 1.00  2 1 4 3 0.80 

 Cat 5 2 1 4 3   2 1 3 4  
2hr Cat 1 1 4 2 3 0.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
3hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
4hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
5hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
6hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
7hr Cat 1 3 1 2 4 1.00  3 2 1 4 1.00 

 Cat 5 3 1 2 4   3 2 1 4  
9hr Cat 1 2 1 3 4 0.80  2 1 3 4 0.80 

 Cat 5 3 1 2 4   3 1 2 4  
10hr Cat 1 2 1 4 3 0.40  2 1 3 4 0.80 

 Cat 5 3 1 2 4   3 1 2 4  
11hr Cat 1 2 1 4 3 0.40  1 2 4 3 0.00 

 Cat 5 3 1 2 4   3 1 2 4  
12hr Cat 1 1 2 4 3 0.00  1 2 4 3 0.00 

 Cat 5 3 1 2 4   3 1 2 4  
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Table 19. Correlations of the SA  and UA Rankings of the Input Parameters 
by Time and Hurricane Category at Coordinate (30, 10) 

 
  Category 1   Category 5 

Time  CP Rmax VT FFP Corr  CP Rmax VT FFP Corr 
0hr SA 2 1 4 3 1.00  2 1 4 3 1.00 

 UA 2 1 4 3   2 1 4 3  
1hr SA 2 3 1 4 0.40  3 1 2 4 1.00 

 UA 3 1 2 4   3 1 2 4  
2hr SA 2 1 4 3 0.40  2 1 4 3 0.40 

 UA 3 1 2 4   3 1 2 4  
3hr SA 1 4 2 3 0.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
4hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
5hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
6hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
7hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
9hr SA 3 2 1 4 1.00  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
10hr SA 3 1 2 4 0.80  3 2 1 4 1.00 

 UA 3 2 1 4   3 2 1 4  
11hr SA 2 1 4 3 0.60  3 1 2 4 0.80 

 UA 1 2 3 4   3 2 1 4  
12hr SA 1 2 4 3 0.80  3 1 2 4 1.00 

 UA 1 2 3 4   3 1 2 4  
 
 
 

Table 20. Correlations of the Category 1 and 5 Rankings of the Input Parameters 
by Time and Analysis Type at Coordinate (30, 10) 

 
  Sensitivity Analysis   Uncertainty Analysis 

Time  CP Rmax VT FFP Corr  CP Rmax VT FFP Corr 
0hr Cat 1 2 1 4 3 1.00  2 1 4 3 1.00 

 Cat 5 2 1 4 3   2 1 4 3  
1hr Cat 1 2 3 1 4 0.40  3 1 2 4 1.00 

 Cat 5 3 1 2 4   3 1 2 4  
2hr Cat 1 2 1 4 3 1.00  3 1 2 4 1.00 

 Cat 5 2 1 4 3   3 1 2 4  
3hr Cat 1 1 4 2 3 0.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
4hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
5hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
6hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
7hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
9hr Cat 1 3 2 1 4 1.00  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
10hr Cat 1 3 1 2 4 0.80  3 2 1 4 1.00 

 Cat 5 3 2 1 4   3 2 1 4  
11hr Cat 1 2 1 4 3 0.40  1 2 3 4 0.20 

 Cat 5 3 1 2 4   3 2 1 4  
12hr Cat 1 1 2 4 3 0.00  1 2 3 4 0.40 

 Cat 5 3 1 2 4   3 1 2 4  
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Figure 50. Distribution of Total Loss Cost for a Category 1 Hurricane 

 

 

Table 21. Percentage Contribution to the Uncertainty in Total Loss Cost by Category of Hurricane 
 

 Category 1  Category 5 
 CP Rmax VT FFP  CP Rmax VT FFP 

Percentage 92.5% 10.1% 1.8% 28.8%  8.2% 48.5% 7.0% 0.8% 
Rank 1 3 4 2  2 1 3 4 

 
 
 

Table 22. Loss Cost Statistics for Various Values of FFP 
 

FFP Mean St. Dev. Minimum Maximum 
LHS $15,384 $12,957 $     546 $  56,274 

1013mB $14,739 $10,786 $  1,294 $  44,631 
1016mB $34,981 $19,494 $  5,752 $  90,963 
1018mB $55,715 $26,427 $13,138 $131,364 
1020mB $83,021 $34,089 $25,179 $179,741 

 
 
Note that the most conservative estimates in Table 22 correspond to holding FFP fixed at 1013mB.  Raising this 
value to just 1016mB increases the mean loss cost by a factor of 2.37 and the maximum by a factor of 2.04.  The 
respective factors for 1020mB are 5.63 and 4.03.  These results are quite illuminating in that loss cost in this simple 
model is quite sensitive to the value of FFP for the most frequently occurring hurricanes.  Note: this is not a 
parameter that has been subjected to variation in the year 2000 submissions. 
 
There are measures other than the one based on Equation 20 that can be used in uncertainty analysis.  Iman and 
Hora (1990) present robust measures that can be used when the response variable has outlying observations that 
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make it difficult to get a reliable estimate of the variance.  Several researchers have offered measures for use in 
fault tree analysis: Bhattacharyya and Amed (1982), Bier (1983), Wheeler and Spulak (1985), and Nakashima and 
Yamato (1982).   
 
Other applications of uncertainty analysis can be found in Iman and Conover (1980), Iman and Helton (1988), and 
Iman, Helton, and Campbell (1990a, 1990b).  Appendix D contains a listing of 110 references to other applications of 
sensitivity and uncertainty analysis. 
 
Summary. This report has provided a detailed sensitivity analysis/uncertainty analysis description for a simple 
Rankine-vortex wind field, cubic damage function and nominal insurance aspects.  The intent is obviously not to 
provide another model for loss estimation purposes but to illustrate the implementation of appropriate statistical 
methodologies for doing SA/UA.  Latin hypercube sampling designs with PCC/SRC analyses and a calculation for 
the expected percentage reduction in uncertainty provide viable methodologies to address two key questions: 
 

• What is the change in the response(s) of a model to changes in model inputs and specifications? 
• What is the variation in model output resulting from the collective variation in the model inputs? 

 
This demonstration analysis has illustrated that the relative importance of input variables is not necessarily the 
same for sensitivity and uncertainty analyses and that the relative rankings are dependent on the intensity of storm.  
This demonstration serves as the basis for a Form B-type module addition to facilitate model-to-model comparisons 
while quantifying some key aspects of models.  Subject to Commission approval, it is anticipated that a set of runs 
would be made by each modeler as part of the modeler approval process.   
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1R. L. Iman (1999). “Latin Hypercube Sampling,” 
Encyclopedia of Statistical Sciences, Update Volume 3, Wiley, NY, 408-411. 
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Latin Hypercube Sampling 
 
Background. While serving as a consultant to Los Alamos National Laboratory during the summer of 1975, W. J. 
Conover of Texas Tech University was asked to develop a method for improving the efficiency of simple Monte Carlo 
used to characterize the uncertainty in inputs to computer models.  Conover's work resulted in the development of a 
stratified Monte Carlo sampling method called Latin hypercube sampling [3]. 
 
At the time of its development in 1975, LHS was applied to some computer modeling applications at Sandia National 
Laboratories (Steck, Iman, and Dahlgren, [14]).  The first journal article on LHS appeared in Technometrics (McKay, 
Conover, and Beckman, [10]).  Software to implement the LHS strategy was developed in 1975 by R. L. Iman.  This 
software was refined and was first released formally in 1980 (Iman, Davenport and Zeigler, [8]).  A later revision (Iman 
and Shortencarier, [9]) has been the most widely distributed mainframe version of the program.  Commercial vendors of 
LHS software include @RISK® and Crystal Ball®. 
 
Latin hypercube sampling is used worldwide in computer modeling applications related to performing safety 
assessments for geologic isolation of radioactive waste and safety assessments for nuclear power plants (Helton [5], 
Helton et al [6], Campbell and Longsine [2]).  It is also used in computer modeling for reliability analyses for 
manufacturing equipment, particularly in optimization schemes for repairable equipment (Painton and Campbell [13]).  
Other applications include the petroleum industry (MacDonald and Campbell [11]); transmission of HIV (Blower and 
Dowlatabadi [1}); and subsurface stormflow modeling (Gwo, Toran, Morris, and Wilson [4]). 
 
Latin Hypercube Sampling. LHS uses a stratified sampling scheme to improve on the coverage of the input space.  
The stratification is accomplished by dividing the vertical axis on the graph of the distribution function of a random 
variable Xj into n nonoverlapping intervals of equal length, where n is the number of computer runs to be made.  
Through F-1(x), these n intervals divide the horizontal axis into n equi-probable, but not necessarily equal length, 
intervals.  Thus, the x-axis has been stratified into n equi-probable and nonoverlapping intervals.  The next step in the 
LHS scheme requires the random selection of a value within each of the n intervals on the vertical axis.  When these 
values are mapped through F-1(x), exactly one value will be selected from each of the intervals previously defined on 
the horizontal axis.  Let X be an n x k  matrix whose jth column contains the LHS for the random variable Xj.  A random 
process must be used to ensure a random ordering of the values within each column of this matrix.  This mixing 
process serves to emulate the pairing of observations in a simple Monte Carlo process. 
 
To fully appreciate the value of the underlying structure of LHS, it is helpful to be familiar with computer models used in 
actual applications.  Such models are usually characterized by a large number of input variables (perhaps as many as a 
few hundred) and usually only a handful of these inputs are important for a given response.  In addition, the model 
response is frequently multivariate and time dependent.  If the input values were based on a factorial design, each level 
of each factor would be repeated many times.  Moreover, the experimenter usually has a particular response in mind 
when constructing the factorial design and this design may be totally ineffective with multiple responses.  On the other 
hand, LHS ensures that the entire range of each input variable is completely covered without regard to which single 
variable or combination of variables might dominate the computer model response(s).  This means that a single sample 
will provide useful information when some input variable(s) dominate certain responses (or certain time intervals) while 
other input variables dominate other responses (or time intervals).  By sampling over the entire range, each variable 
has the opportunity to show up as important, if it indeed is important.  If an input variable is not important, then the 
method of sampling is of little or no concern.  Also, as will be shown, the LHS is more efficient that simple random 
sampling in a large range of conditions. 
 
Variability of Estimates from Random Sampling and LHS. Simple random sampling enjoys widespread use in 
simulation applications, so it is of interest to compare it with LHS.  One way to do this is to compare the variability of 
estimates obtained from the two procedures.  Let X1 and X2 be two independent input variables  for a computer model.  
Using order statistics, the expected probabilistic coverage of the joint input space for X1 and X2 under random sampling 
for a sample of size n is given as:  
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On the other hand, LHS requires that one value be selected from each of the extreme intervals (0, 1/n ) and [(n-1)/n, 1].  
Using the expected values from these intervals gives the expected probabilistic coverage of the joint input space for two 
variables under LHS for a sample of size n  is given as 
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                                                                                          (2) 

 
For n ≥ 2 the expression in Eq. 2 is always greater than the expression in Eq. 1, so LHS can be expected to provide 
better probabilistic coverage of the input space than a simple random sample.  For example, when n = 10, Eq. 1 gives 
66.9% and Eq. 2 gives 81%. 
 
The probabilistic coverage of the input space provides a useful comparison of LHS and simple random sampling, but it 
does not provide a direct answer as to which sampling scheme might be preferred.  One way to address the preference 
issue is to compare the variability of the estimates obtained from each of the sampling schemes as this provides a 
measure of efficiency, and thereby, cost effectiveness.  For example, in many applications it is desired to estimate the 
mean of the output.  Which sampling scheme provides the most efficient estimate for the mean? 
 
Variability can be measured by using replicated LHS.  That is, rather than using one LHS with n = 100, five replicates of 
20 each could be used.  The replication approach works very well if the model is complex.  On the other hand, if the 
model is simple, it may be possible to calculate the variability analytically.  The following simple linear model is used to 
provide a direct comparison of LHS with random sampling: 
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β                                                                               (3) 

 
where the Xi are independent and uniformly distributed on the interval (0,1).  Under simple random sampling the 
variance of the estimator of the mean for the model in Eq. 3 is 
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Iman and Conover (Eq. 2.43) [7] have shown that under LHS the variance of the estimator of the mean for the model in 
Eq. 3 is 
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Note that the estimator in Eq. 5 is a factor of 1/n 2 smaller than the estimator in Eq. 4, that is 
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YV RS

LHS =                                                                             (6) 

 
This means that a value of n = 1000 in Eq. 4 provides the same variance as a value of n = 10 in Eq. 5, or the cost 
savings in sampling is reduced by a factor of 100 when using LHS rather than simple random sampling to estimate the 
mean for the model in Eq. 3. 
 
Confidence Intervals for the Mean for Random Sampling and LHS. To illustrate the results in Eqs. 3 to 6, two 
random samples and two LHSs of size n = 10 have been selected for independent random variables uniformly 
distributed on the interval (0,1).  The samples are given below. 
 
A 95% confidence interval for the population mean of Y for the model in Eq.3 with k = 2 and β1 = β2 = 1 using the 
random samples is: 0.702 ≤ E(Y) ≤ 1.436.  Iman and Conover (Eqs. 2.44 and 2.45) [7] show that under LHS if all βi ³ 0, 
the largest possible value of the sample mean when evaluating the linear model in Eq. 3 is 
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Random Samples Latin Hypercube Samples 
Observation X1 X2 Observation X1 X2 

1 .164 .257 1 .270 .963 
2 .549 .136 2 .372 .611 
3 .595 .021 3 .148 .520 
4 .351 .629 4 .712 .313 
5 .831 .565 5 .574 .052 
6 .847 .622 6 .437 .453 
7 .890 .769 7 .963 .822 
8 .231 .135 8 .820 .122 
9 .816 .820 9 .003 .226 
10 .938 .528 10 .628 .747 
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i
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and that the smallest possible value of  the sample mean is 
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Combining the results in Eqs. 7 and 8 produces the following interval for the mean of Y as 
 

( ) Y
n

n
YEY

n

n

11 −
≤≤

+
                                                                     (9) 

 
Substitution of the n = 10 values obtained for the two LHSs in the above table into the function Y = X1 + X2 gives a 
sample mean of .976 and Eq. 9 provides the following interval: 0.887 ≤ E(Y) ≤ 1.084. 
 
The interpretation of the confidence interval based on random sampling is that there is 95% confidence that the true 
value of the population mean (1) is contained in the interval.  However, the interval based on LHS has a much stronger 
interpretation — the true value of the mean is contained in the interval.  Another way of stating this result is that Eq. 9 
provides a 100% confidence interval for the population mean. 
 
This last statement is worth considering further.  Equation 7 gives the maximum value of the sample mean as 1.10 for 
this example.  Substitution of this maximum value into Eq. 9 produces the following interval: 1.000 ≤ E(Y ) ≤ 1.222, 
which contains the E(Y) = 1.  In an analogous manner Eq. 8 gives the minimum value of the sample mean as 0.90 and 
based on this value Eq. 9 produces the following interval: 0.818 ≤ E(Y ) ≤ 1.000, which also contains the E(Y) = 1.  In 
other words, it is not possible for LHS to produce a sample mean that allows the E(Y) to fall outside of the interval given 
in Eq. 9.  Hence, the reason for using the expression 100% confidence. 
 
Eqs. 7 and 8 give the absolute minimum and maximum values for the sample mean under LHS as 0.9 and 1.1, 
respectively.  While these bounds are quite narrow, a computer simulation (200 samples of size n = 10) provides more 
realistic estimates of the actual minimum and maximum values for the sample mean as 0.964 and 1.030, respectively.  
That is, the bounds 0.9 and 1.1 are extremely conservative (much wider than actual sampling will produce). 
 
The overall mean of the 200 random samples in this simulation was 1.00338 while the standard error of the means was 
.1332208 (true values are 1 and .129101).  The overall mean of all 200 LHSs is 1.000338 and the variance of the 
means was .013266.  Other linear models will give similar results. 
 
Transforming Models to Linearity.  The linear model example illustrated an impressive reduction in the variance 
associated with the estimation of the E(Y) when LHS is used rather than simple random sampling.  Stein [15] has 
shown that as long as the sample size n is large compared to the number of variables k, LHS gives an estimator of E(Y) 
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with lower variance than simple random sampling for any function Y(X) having finite second moment.  In addition, the 
closer that Y(X) is to additive in the components of X, the more LHS “helps“ relative to random sampling.  Stein also 
proposes a procedure for transforming the variables so that the functions whose expectation is being estimated is more 
nearly additive in the transformed variables than in the original variables.  (Note: see Owen [12] for an important 
correction to Stein’s work.) 
 
Estimate of the Variance of the Mean of a Function. McKay, Conover, and Beckman [10] and Stein [15] compare 
the variance of estimate of the mean of a function h(X) for LHS and random sampling.  The expected value of h(X) is 
estimated as 

∑
=

−=
n

j
jXhnh

1

1 )(                                                                       (10) 

For simple random sampling, the estimator is unbiased and 
 

))(var()var( Xhnh 1−=                                                                    (11) 
 
If LHS is used, then the estimate of the mean is still unbiased, and  
 

))(),(cov()())(var()var( 21
11 1 XhXhnnXhnh −+= −−                            (12) 

 
where X1 and X2 represent any two LHS input vectors.  Thus, LHS lowers the variance if and only if cov(h(X1),h(X2)) < 
0.  Stein shows that as n →∞, the covariance term is nonpositive.  McKay, Conover, and Beckman [10] show the 
covariance is nonpositive if h(X) is a monotone function of  the components of the vector X. 
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Appendix B: Sensitivity Analysis 
 

Graphs of the Standardized Regression Coefficients  
versus Time for Category 1 and 5 Hurricanes 

for the following Paths in the 5 ×× 13 Grid 

 
 

Figure B.1 Coordinates (0, 0) to (180, 0) 
Figure B.2 Coordinates (0, 5) to (180, 5) 
Figure B.3 Coordinates (0, 10) to (180, 10) 
Figure B.4 Coordinates (0, 15) to (180, 15) 
Figure B.5 Coordinates (0, -5) to (180, -5) 
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Figure B.1 Standardized Regression Coefficients for the Path from (0, 0) to (180, 0) 
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Figure B.1 Standardized Regression Coefficients for the Path from (0, 0) to (180, 0) 
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Figure B.1 Standardized Regression Coefficients for the Path from (0, 0) to (180, 0) 
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Figure B.1 Standardized Regression Coefficients for the Path from (0, 0) to (180, 0) 
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Figure B.1 Standardized Regression Coefficients for the Path from (0, 0) to (180, 0) 
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Figure B.2 Standardized Regression Coefficients for the Path from (0, 5) to (180, 5) 
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Figure B.3 Standardized Regression Coefficients for the Path from (0, 10) to (180, 10) 
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Figure B.4 Standardized Regression Coefficients for the Path from (0, 15) to (180, 15) 
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Figure B.5 Standardized Regression Coefficients for the Path from (0, -5) to (180, -5) 
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Figure B.5 Standardized Regression Coefficients for the Path from (0, -5) to (180, -5) 
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Figure C.1 Expected Percentage Reduction in Uncertainty for the Path from (0, 0) to (180, 0) 
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Figure C.1 Expected Percentage Reduction in Uncertainty for the Path from (0, 0) to (180, 0) 
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Figure C.1 Expected Percentage Reduction in Uncertainty for the Path from (0, 0) to (180, 0) 
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Figure C.2 Expected Percentage Reduction in Uncertainty for the Path from (0, 5) to (180, 5) 
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Figure C.2 Expected Percentage Reduction in Uncertainty for the Path from (0, 5) to (180, 5) 
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Figure C.2 Expected Percentage Reduction in Uncertainty for the Path from (0, 5) to (180, 5) 

1211109876543210

125

100

75

50

25

0

Time (hr)

E
xp

ec
te

d 
P

er
ce

nt
ag

e 
R

ed
uc

tio
n

Grid 120, 5

Cp
Rmax
Vt
FFP

1211109876543210

125

100

75

50

25

0

Time (hr)

E
xp

ec
te

d 
P

er
ce

nt
ag

e 
R

ed
uc

tio
n

Grid 105, 5

Cp
Rmax
Vt
FFP

1211109876543210

125

100

75

50

25

0

Time (hr)

E
xp

ec
te

d 
P

er
ce

nt
ag

e 
R

ed
uc

tio
n

Grid 90, 5

Cp
Rmax
Vt
FFP



Appendix C: Graphs of the Expected Reduction in Uncertainty 

 

Southwest Technology Consultants                                                        September  2001                                                                           Page  10 

 

 
Category 1 Category 5 

1211109876543210

125

100

75

50

25

0

Time (hr)

E
xp

ec
te

d 
P

er
ce

nt
ag

e 
R

ed
uc

tio
n

Grid 135, 5

Cp
Rmax
Vt
FFP

  

1211109876543210

125

100

75

50

25

0

Time (hr)Time (hr)

E
xp

ec
te

d 
P

er
ce

nt
ag

e 
R

ed
uc

tio
n

Grid 150, 5

Cp
Rmax
Vt
FFP

  

1211109876543210

125

100

75

50

25

0

Time (hr)

E
xp

ec
te

d 
P

er
ce

nt
ag

e 
R

ed
uc

tio
n

Grid 165, 5

Cp
Rmax
Vt
FFP

  
 

Figure C.2 Expected Percentage Reduction in Uncertainty for the Path from (0, 5) to (180, 5) 
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Figure C.2 Expected Percentage Reduction in Uncertainty for the Path from (0, 5) to (180, 5) 
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Figure C.3 Expected Percentage Reduction in Uncertainty for the Path from (0, 10) to (180, 10) 
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Figure C.3 Expected Percentage Reduction in Uncertainty for the Path from (0, 10) to (180, 10) 
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Figure C.3 Expected Percentage Reduction in Uncertainty for the Path from (0, 10) to (180, 10) 
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Figure C.3 Expected Percentage Reduction in Uncertainty for the Path from (0, 10) to (180, 10) 
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Figure C.3 Expected Percentage Reduction in Uncertainty for the Path from (0, 10) to (180, 10) 
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Figure C.4 Expected Percentage Reduction in Uncertainty for the Path from (0, 15) to (180, 15) 
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Figure C.4 Expected Percentage Reduction in Uncertainty for the Path from (0, 15) to (180, 15) 
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Figure C.4 Expected Percentage Reduction in Uncertainty for the Path from (0, 15) to (180, 15) 
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Figure C.4 Expected Percentage Reduction in Uncertainty for the Path from (0, 15) to (180, 15) 
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Figure C.4 Expected Percentage Reduction in Uncertainty for the Path from (0, 15) to (180, 15) 
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Figure C.5 Expected Percentage Reduction in Uncertainty for the Path from (0, -5) to (180, -5) 
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Figure C.5 Expected Percentage Reduction in Uncertainty for the Path from (0, -5) to (180, -5) 
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Figure C.5 Expected Percentage Reduction in Uncertainty for the Path from (0, -5) to (180, -5) 
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Figure C.5 Expected Percentage Reduction in Uncertainty for the Path from (0, -5) to (180, -5) 
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Figure C.5 Expected Percentage Reduction in Uncertainty for the Path from (0, -5) to (180, -5) 
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1Complied by Jon C. Helton, Sandia National Laboratories, Albuquerque, NM. 
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